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Abstract: The invention of portfolio insurance as a strategy for limiting portfolio losses was introduced in the early 1980s
and gained spectacular popularity throughout the decade, attracting between $60 billion to $90 billion from institutional money
managers. The method provided downside protection against a long equity position by synthetically replicating a long put option
using equity futures during an era when exchange-traded equity options were not sufficiently liquid. Unfortunately, the strategy
came to a catastrophic end on the “Black Monday” of October 19, 1987, when the president of the New York Stock Exchange
shut down the nascent technology used by index arbitrage program trading groups. This caused significant mispricings between
futures and cash markets, making the required synthetic put option replication trading impossible. The portfolio insurance
strategy was declared a complete failure and never has since regained widespread popularity. Three decades later, modern
markets now fully embrace program trading, and the likelihood that program trading would be shut down for any reason ever
again seems impossible. This paper examines how portfolio insurance would have performed during the 1991 to 2020 time
period, during which 3 major stock market crashes occurred and program trading was never shut down. The paper concludes that
portfolio insurance received unjust blame for the 1987 crash and its abandonment since then has been irrational and unfortunate
for those seeking long equity exposure with a cost-efficient strategy for limiting portfolio losses.
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1. Introduction

An article featured in Fortune magazine in June, 1982,
stimulated readers with the opening sentence [1] “It sounds
too good to be true: a method for making money in stocks
while avoiding their downside risk.” What followed in the
years to come was a massive inflow of investments from
institutional investors across the United States of America,
clearly demonstrating the nearly universal appetite for what the
creators of the strategy promised in their so-called “protective
portfolio management.” This underlying financial innovation,
also known as portfolio insurance, was introduced in the
early 1980s and gained spectacular popularity throughout the
decade, attracting between $60 billion to $90 billion from
institutional money managers. The method provided downside
protection against a long equity position by synthetically
replicating a long put option using equity futures, during an
era when exchange-traded equity options were not sufficiently

liquid [2]. Remarkably, the strategy continues to be an area of
interest in financial innovation in modern finance [3-7].

The strategy worked extremely well in its first 5 years. Then,
in an astounding episode in the history of financial markets,
demand for the strategy collapsed shortly after the so-called
“Black Monday” of October 19, 1987. On this day, in a
futile effort to abate a double-digit percentage daily loss in the
S&P 500 equity index, the president of the New York Stock
Exchange suddenly and inexplicably shut down the nascent
technology used by index arbitrage program trading groups
[8]. This caused significant mispricings between futures
and cash markets, making the required synthetic put option
replication trading required by portfolio insurance nearly
impossible. The portfolio insurance strategy was potentially
wrongly blamed for the crash on Black Monday, unjustly
declared a complete failure, and regrettably has never since
regained widespread popularity. Three decades later, modern
markets now fully embrace program trading, and the likelihood
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that program trading would be shut down for any reason ever
again seems impossible. All of this inspired an investigation
into how portfolio insurance would have performed since its
abandonment in 1987. This paper examines how portfolio
insurance would have performed during the 1991 to 2020 time
period, during which 3 major stock market crashes occurred
(2000, 2008, and 2020) and program trading was never shut
down. The main contribution of the paper will be to provide
a rigorous answer the question: Is this method of portfolio
management too good to be true?

To begin, a brief review is given on the theoretical stochastic
model for the time evolution of a stock’s price upon which
option pricing theory is based: geometric Brownian motion.
This is essential to laying bare the foundation for synthetic
replication of options which is at the heart of portfolio
insurance [9].

Next, as an aside to stimulate the reader’s interest, the merits
of options as buy and hold investments is examined, offering a
unique perspective since options are more commonly viewed
as hedging instruments than investments in research and
practice [10]. A theoretical framework is constructed to
measure the investment performance of long at-the-money
call options and compare that to a long stock position, under
the quixotic assumption that the stock price follows the
geometric Brownian motion model. Within this framework
it is straightforward to evaluate whether or not it is better to
buy and hold at-the-money call options, or buy and hold the
underlying stock.

Finally, the results of the main experimental simulation
of this paper are elucidated in measuring how the portfolio
insurance strategy would have performed during the 1991 to
2020 time period. The paper concludes with an impartial
discussion of the merits and limitations of portfolio insurance.

2. Black-Scholes Option Pricing
Formula

In this section the derivation of the famous Black-Scholes
formula for the price of a European call option is given, first
published by Fischer Black and Myron Scholes in 1973 [11].
The Black-Scholes option pricing theory assumes that the
stock price evolves according to geometric Brownian motion
[12-15]. This model assumes a stochastic differential equation
of the form

dS

S
= µdt+ σdw (1)

A description of the model and its parameters is as follows:
1. During a small time increment dt, S changes to S + dS
2. The return dS

S has predictable and random components
3. The predictable component is µdt, where µ is the

average annual growth rate of the stock price
4. The random component is σdw, where σ is a measure

of the standard deviation of continuously compounded
annual returns, and dw is a random number drawn from
a normal distribution with mean zero and variance equal

to dt
5. This random walk in stock price is known as geometric

Brownian motion, named after the Scottish botanist
Robert Brown

6. The process w in dw is denoted a ”Wiener Process,”
after Nobert Wiener from MIT

Ito’s Lemma is needed to derive the explicit formula
for S(t), the stochastic process associated with geometric
Brownian motion. For our purposes, for a function V =
V (S, t), Ito’s Lemma [16] may be written as
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With V = lnS and dS
S = µdt+ σdw, it follows that
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Integrating, an expression for the terminal stock price S(T )
is given by

S(T ) = S(t) exp

{(
µ− 1

2
σ2

)
(T − t) + σv

}
(5)

In a risk neutral world [10], we may assume µ = r and we
arrive at

S(T ) = S(t) exp

{(
r − 1

2
σ2

)
(T − t) + σv

}
(6)

In order to derive the Black-Scholes European call option
price formula, the expected value of a nonlinear function of a
normal random variable, v, taken with respect to its probability
density function, is computed. This is true since the European
call option value is equal to its discounted expected payoff at
expiration:

CX(t) = e−r(T−t)E{max [0, S(T )−X] |S(t)} (7)

which may be shown [11] to lead to the famous Black-Scholes
European call option formula

CX(t) = S(t)N(d1)− e−r(T−t)XN(d2) (8)
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A summary of the variables in the formula for CX(t) is as
follows
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CX(t) = call option price

S(t) = current stock price

X = strike price of the option

r = risk-free interest rate

σ = standard deviation of the continuously compounded
annual stock returns

T= maturity date

(T − t) = time to option maturity (in years)

N(x) = normal cumulative distribution function

It is important to note that it is well-known and universally
surprising that the Black-Scholes European call option formula
does not depend on the average annual growth rate of the stock
price µ. Of course the expected value of the stock price at
expiration does depend on µ, as does the expected return of
the call option as a buy and hold investment. This conundrum
motivates the topic of the next section.

3. Options as a Buy and Hold
Investments

In this section, as a precursor to the historical evaluation
of portfolio insurance, an investment of long call options is
examined as a buy and hold investment. The theoretical
investment performance1 of long at-the-money one-year call
options is compared to that of long stock, under the assumption
that the stock price follows the geometric Brownian motion
model. For long term investors, is it better to buy and hold at-
the-money 1-year call options, or buy and hold the underlying
stock? A constant annual volatility σ = 0.30 is assumed in
this analysis.

It will turn out that the answer depends on the assumption
for the expected growth rate µ in this entirely theoretical
framework.

4. Monte Carlo Simulations
Assuming the stock price follows geometric Brownian

motion, the evolution of the stock price over a small increment
in time ∆t may be approximated using the Monte Carlo
method as

S(tj+1) = S(tj)e

[
(r− 1

2σ
2)(∆t)+σ

√
(∆t) εj+1

]
(12)

where εj+1 ∼ N(0, 1), i.e., εj+1 is a normally distributed
random variable with zero mean and unit variance.

The results using 10,000 Monte Carlo simulations are
summarized in Table 1 and illustrated in Figures 1 and 2. With
Monte Carlo simulations assuming a positive expected growth
rate µ > 0, the results demonstrate unambiguously

1. The long stock strategy has a higher Sharpe ratio, and
2. The long at-the-money call option has a higher expected

return
Interestingly, these results are reversed when the assumed

expected growth rate is negative (µ < 0), as can be seen in
Figures 1 and 2. These theoretical conclusions may provide
insight into equity derivatives portfolio managers’ daunting
task of securities selection.

Table 1. Summary of Superior Investment Strategy.

Performance Metric µ≥0 µ < 0

Mean Return Long Call Option Long Stock

Sharpe Ratio Long Stock Long Call Option

Figure 1. Mean Return vs. Value of Expected Growth Rate µ.

Figure 2. Sharpe Ratio vs.Value of Expected Growth Rate µ.

1 The metric we use for theoretical investment performance is the Sharpe ratio, equal to the mean excess return divided by the standard deviation of excess return,
where the excess return is measured relative to the risk free rate
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5. Synthetic Replication of Long Call
Option

The original paper on the Black-Scholes options pricing
theory relied on a no-arbitrage argument to derive a stochastic
partial differential equation that must hold for all derivative
securities: “if options are correctly priced in the market,
it should not be possible to make sure profits by creating
portfolios of long and short positions in options and their
underlying stocks” [11]. This reasoning led to the celebrated
Black-Scholes equation

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0 (13)

Essential to this derivation is the fact that theoretically an
option may be synthetically replicated [2] with a position in
the underlying stock in addition to borrowing or lending at the
risk free rate r. A synthetic call option CS is created using a
replication strategy [9] where a position in the stock itself of
∆C units is maintained via daily dynamic delta hedging, where
∆C is easily computed as

∆C = N(d1), (14)

where, as before,
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Now consider two portfolios
1. Owning a stock along with the right to sell it

S + P

2. Having the right to buy the stock together with enough
money at expiration to exercise that right

C +Xe−r(T−t),

where, as before,X is the strike price of the options. Clearly
at expiration, by definition these portfolios have identical
payoffs, assuming the put option and the call option have the
same strike price X and expiration date T . With identical
payoffs at expiration, a no-arbitrage argument asserts that the
portfolio values at any time before expiration must also be the
same. This leads to the put-call parity equation:

S + P = C +Xe−r(T−t) (16)

An insured portfolio S + P is thus identical to C +
Xe−r(T−t). This relationship is fundamental to the portfolio
insurance simulation: the performance of S + P will be
compared to that of C + Xe−r(T−t), using a synthetic call
option CS = ∆C , plus appropriate borrowing/lending at the
risk free rate r, instead of the exchange-traded call option
C. The value of ∆C changes as the underlying stock price
changes, so daily delta hedging must be used to maintain the
highest precision synthetic call that is possible. The volatility

σ and risk-free rate r are assumed to be constant throughout
the year and updated annually on the first day of the year.

6. Portfolio Insurance Simulation

In this simulation the 30-year investment performance of
two portfolios is compared:

1. Long the S&P 500 equity index plus long an at-the-
money exchange-traded one-year put option, with the
put option being rolled on the first trading day of each
year. This portfolio is denoted S + P

2. Long a synthetic at-the-money one-year call option plus
cash invested at the risk free rate r. This portfolio is
denoted PI .

The volatility σ and risk free rate r are updated on the
first trading day of each calendar year, and assumed to be
constant throughout the year. Portfolio (2) is the portfolio
corresponding to portfolio insurance, and can be viewed as a
synthetic form of S + P due to put-call parity. The amount of
cash invested is such that the total cash outlays are the same for
portfolios (1) and (2). The amount ∆C = N(d1) varies with
the daily S&P 500 equity index price, so daily delta hedging
is used to maintain the highest precision synthetic call that is
possible.

7. Simulation Results

First, the historical implied volatility using the VIX Index
is computed. These values on the first trading day of each
calendar year are shown in Figure 3. Figure 4 shows the
corresponding Black-Scholes price of an at-the-money (ATM)
exchange-traded put option, expressed as a percentage of the
S&P 500 index price (SPX). Figures 5 and 6 show the strike
price of the 1-year ATM put option and risk-free annual
interest rate, as measured by 3-month US treasury bills, both
important variables in the portfolio insurance simulation.

Figure 3. Implied Volatility of 1-year ATM Put Option on SPX over 30 Years.
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Figure 4. Percentage Cost of 1-year ATM Put Option on SPX over 30 Years.

Figure 5. Strike Price of 1-year ATM Put Option on SPX Over 30 years.

Figure 6. 3-month U.S. Treasury Annual Interest Rate Over 30 years.

Figure 7. S&P 500 Index (BLUE) and Portfolio Insurance (RED).

Figure 7 shows the main result of the portfolio insurance
simulation. Dividend payments on the SPX are assumed to
be distributed evenly across all the trading days of each year.
Starting with $100 in 1991, the cumulative growth in wealth
is shown for the SPX in blue and for portfolio insurance in
red. Clearly the portfolio insurance limits losses, as promised,
while capturing a good amount of the upside gains. A stunning
result is that the annualized Sharpe ratio of the portfolio
insurance is 0.63, while the Sharpe ratio of the SPX is 0.55
over this time period. The return per unit risk of the portfolio
insurance is higher than that of the SPX. Interestingly, the
monthly returns of the SPX are higher than the monthly
returns of the portfolio insurance strategy in 243 out of the
360 months in the simulation, but the Sharpe ratio is lower.
This illustrates the powerful loss-limiting risk management
capability of portfolio insurance: the large drawdowns in the
SPX are attenuated in exchange for modest underperformance
in the positive months.

Figure 8. S&P 500 Index (BLUE) and Portfolio Insurance (RED).

Figure 8 illuminates the first twenty years of the simulation,
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1991 to 2010, during which the portfolio insurance strategy
achieves almost exactly the same growth in wealth as the SPX
while encountering significantly less volatility and peak-to-
trough drawdowns along the way. This time period was an
excellent one to have been invested in the portfolio insurance
strategy.

8. Discussion
One main driver for the original use of synthetic options

for portfolio insurance was that exchange-traded options
were not available at the time. That is clearly no longer
the case. Impetus for this research was derived from a
widespread curiosity: the cost of ATM exchange-traded put
options is known in advance. But what is the equivalent
cost of a synthetically replicated put option? Is it better to
use a synthetic or exchange-traded put option if an investor
seeks downside protection? The effective annual cost of the
synthetic put options is computed and compared to the annual
cost of the exchange-traded put options for comparison in
Table 3 in the Appendix. In sum, the synthetically replicated
put options are cheaper than exchange-traded put options in 21
out of 30 years. This is a reflection of the casual observation
that historically, most of the time, implied volatilities are
higher than realized volatilities. The average annual synthetic
put option cost is 6.5% while the average annual exchange-
traded put option cost is 7.4%.

Furthermore, Table 3 shows the average of annual returns,
standard deviation of annual returns, and Sharpe ratio for three
strategies considered in this simulation: S&P 500 + synthetic
ATM put option, S&P 500, S&P 500 + exchange-traded ATM
put option P

Table 2. Performance Comparison of Portfolio Management Strategies.

Strategy Mean Standard Deviation Sharpe Ratio

S&P 500 + synthetic P 6.03 9.52 0.63

S&P 500 10.09 18.31 0.55

S&P 500 + P 4.75 11.47 0.41

Our portfolio insurance simulation demonstrates that the
Sharpe ratio of the S&P 500 + synthetic put option strategy
(portfolio insurance) is higher than that of the S&P 500, while
the S&P 500 + exchange-traded put option has a lower Sharpe
ratio than that of the S&P 500 . The portfolio insurance
strategy shows outstanding resilience during market crashes
in 2000-2002, 2008, and 2020, with only one hiccup during
March 2020. In this volatile month, the market experienced
2 of the top 10 biggest down days in history as well as 2
of the top 10 biggest up days in history. This is an uncanny
and brutal example of exactly what the originators of portfolio
insurance warned against in a footnote of their original paper
[2]: Remember that the analogy to insurance breaks down

under a sudden catastrophic loss that does not leave sufficient
time to adjust the replicating portfolio. This is exactly what
happened during the onset of the COVID-19 pandemic in
March 2020, during which the S&P 500 encountered daily
losses of -11.98% on March 16 and -9.51% on March 12,
along with daily gains of +9.38% on March 24 and +9.29%
on March 13. During this month the world faced despair
and uncertainty, and the extreme market volatility caused the
portfolio insurance to struggle. Aside from March 2020, in all
of the other 359 out of 360 months during the past 30 years
portfolio insurance worked like a charm.

One last thing to note is that the value of exchange-traded
put options usually soars in a market crash, delivering to the
long put holder a double-whammy of positive returns: the
spike in volatility plus the spike in intrinsic value of the put
option both boost the option value as the stock price falls. This
rare positive effect is hard to predict and capture, and is thus
not a robust and reliable portfolio management methodology.

9. Transaction Costs

Transaction costs are extremely important in simulations
and real portfolio management, and conservative assumptions
should always be made. Transaction costs spoil many
mathematically elegant theories and innovations, as
summarized in the following quote

Transactions costs invalidate the Black-Scholes
arbitrage argument for option pricing, since
continuous revision implies infinite trading.
Discrete revision using Black-Scholes deltas
generates errors which are correlated with the
market, and do not approach zero with more
frequent revision when transactions costs are
included. [9]

The negative effect of market impact combined with trading
fees is what many quantitative traders call slippage. Portfolio
insurance, or any strategy for that matter that requires
rebalancing involving selling as prices fall and buying as
prices go up must carefully take slippage into account when
framing performance expectations. As the size of the managed
positions grows relative to the total market capitalization,
slippage becomes critically important.

In this simulation the average annual transaction cost is
0.04783 per basis point slippage vs. arrival price. This means
that if the average slippage in trading were 5 basis points, then
the total transaction costs on average would lower the annual
returns shown in Table 2 by 5 ∗ 0.04783 = 0.24%. This is a
modest yet non-negligible amount.

For a more comprehensive and generic analysis of the effect
of transaction costs on investment performance, the Break-
even Slippage Ratio (BSR) is introduced as the ratio of annual
average profit to annual average trading volume required to
achieve that profit. Then if a strategy realizes an actual average

2 The zero-slippage Sharpe ratio SZ is the Sharpe ratio obtained in simulations assuming zero transaction costs
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slippage of s̄, then it can be easily shown that the relationship
between realized Sharpe ratio SR and zero-slippage Sharpe
ratio SZ is given as2

SR =
(BSR− s̄)

BSR
SZ (17)

This metric is as useful as Sharpe ratio in terms of
assessing the sensitivity of a portfolio management strategy
to assumptions about transactions costs. Clearly as the BSR
increases, the effect of s̄ on SR diminishes. In sum, high
BSRs may be as important as high zero-slippage Sharpe ratios
in simulations. The BSR for the portfolio insurance strategy
described in this paper is equal to 135 basis points.

10. Conclusion

The first contribution of this paper was to compare
in a purely theoretical framework the relative investment
performance of long stock positions compared to long at-
the-money call options. It was shown clearly that the long
stock strategy has a higher Sharpe ratio while the long at-the-
money call option has a higher expected return, assuming the
constant growth rate of the stock is positive. These results are
reversed when the assumed expected growth rate is negative.
These theoretical conclusions may provide insight into equity
derivatives portfolio managers’ daunting task of securities
selection.

The second contribution of this paper was to perform
a long term historical simulation of portfolio insurance.
Portfolio insurance as a strategy for limiting portfolio losses
was introduced in the early 1980s and gained spectacular
popularity and success throughout its first few years. After the
crash of October 19, 1987, its use was abandoned and it never
regained popularity as the consensus was that the strategy
was somehow responsible for the crash. This paper has
shown through simulation that portfolio insurance would have
performed exactly as intended during the 1991 to 2020 time
period, during which 3 major stock market crashes occurred.

In fact the synthetically replicated put options associated
with portfolio insurance are shown in this paper to be cheaper
than exchange-traded put options in 21 out of 30 years in the
simulation. This is a reflection of the casual observation that
historically, most of the time, implied volatilities are higher
than realized volatilities. All this may suggest that portfolio
insurance received unjust blame for the 1987 crash and its
abandonment since then has been irrational and unfortunate
for those seeking long equity exposure with a cost-efficient
strategy for limiting portfolio losses. Perhaps the rebirth
of a left-for-dead brilliant innovation in finance, portfolio
insurance, is on the horizon.
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Appendix

Table 3. Comparison of Exchange-Traded and Synthetic Put Options.

Year P S S + P PI Synthetic P

1991 8.63 33.90 25.27 25.30 8.60

1992 6.96 7.50 0.54 4.30 3.20

1993 4.74 9.90 5.16 6.20 3.70

1994 4.40 1.50 -2.90 -0.30 0.30

1995 3.86 38.70 34.84 33.50 5.20

1996 3.64 21.40 17.76 17.60 3.80

1997 6.64 34.70 28.06 26.90 7.80

1998 7.56 27.90 20.34 19.60 8.30

1999 8.01 20.00 11.99 14.00 6.00

2000 7.59 -10.80 -7.59 -6.20 6.20

2001 8.20 -8.80 -8.20 -5.70 5.70

2002 9.17 -20.00 -9.17 -6.60 6.60

2003 11.59 24.20 12.61 17.30 6.90

2004 7.62 10.30 2.68 6.00 4.30

2005 5.01 7.50 2.49 2.80 4.70

2006 3.73 13.80 10.07 10.90 2.90

2007 3.13 4.10 0.97 -1.80 5.90

2008 8.11 -34.00 -8.11 -6.10 6.10

2009 16.87 24.50 7.63 13.00 11.50

2010 9.56 14.50 4.94 6.60 7.90

2011 8.02 2.50 -5.52 -8.60 11.10

2012 10.47 17.10 6.63 9.20 7.90

2013 8.35 28.00 19.65 21.90 6.10

2014 6.49 14.70 8.21 8.00 6.70

2015 8.64 -0.10 -8.64 -4.60 4.60

2016 8.24 14.70 6.46 7.10 7.60

2017 6.39 21.80 15.41 16.40 5.40

2018 4.47 -5.40 -4.47 -6.70 6.70

2019 9.86 32.40 22.54 23.60 8.80

2020 5.53 16.70 11.17 3.00 13.70
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